Last week I was awarded a Teaching Excellence Award from the college. The award was given for my teaching activities within the school , including: the development of a set of tutorials given to students and staff across levels, supervising undergraduate and postgraduate students, and contributions to undergraduate courses.
Pass The Ball at CHI 2015 in Seoul
Posted on 2015-04-22
This morning I presented a paper at CHI entitled Pass The Ball: Enforced Turn-Taking in Activity Tracking. See the abstract below
We have developed a mobile application called Pass The Ball that enables users to track, reflect on, and discuss physical activity with others. We followed an iterative design process, trialling a first version of the app with 20 people and a second version with 31. The trials were conducted in the wild, on users’ own devices. The second version of the app enforced a turn-taking system that meant only one member of a group of users could track their activity at any one time. This constrained tracking at the individual level, but more successfully led users to communicate and interact with each other. We discuss the second trial with reference to two concepts: socialrelatedness and individual-competence. We discuss six key lessons from the trial, and identify two high-level design implications: attend to “practices” of tracking; and look within and beyond “collaboration” and “competition” in the design of activity trackers.
Ffmpeg and Chromecast
Posted on 2015-03-15
I've been struggling recently with transcoding media files and streaming to Chromecast. Starting with the excellent project castnow over on github I wanted to be able to 1) stream media files directly from rar archives, and 2) create a web interface to start media files. It is not meant to be overly ambitious but just something useful to use at home.
Among several problems I've encountered so far, one has been especially annoying and turned out to have a very simple fix. The transcoding is done using ffmpeg. What I've been doing is to let ffmpeg reencode any media file I give it, into an mp4 with h264 and aac. This works most of the time, however for some mkv-s there's been no image when transcoded. Casting the mkv directly to the chromecast gives you moving pictures, but it has no sound (since Chromecast does not support 5.1 audio as of yet as far as I understand).
The first attempt at a solution was to then not reencode the video but to simply copy the original. That is simple using ffmpeg flag: -vcodec copy. Unfortunately this still doesn't work. However encoding the video to a file and then casting the file to the chromecast works. Thus there was something going on when the output from ffmpeg is streamed directly. I've still not worked out what is going on, but I've found a solution. Instead of creating a mp4 container, encoding everything into a mkv (or matroska) suddenly makes everything work just fine. The final line is
[code]
cat some-media-file | ffmpeg -i - -f matroska -vcodec h264 -acodec aac -ac2 pipe:1 | stream-to-chromecast
[/code]
So far this seems to work all the time, however it is somewhat unnecessary to encode h264 if the video is already h264. In my project I therefor check codecs and set the flags for ffmpeg accordingly.
The project is written in Node.JS and is available on the following github repository.
Why and How to Quickly Build Apps - Make No Decisions
Posted on 2015-03-10
Today I was invited to give a talk at the Mobile Apps Group Meetup in Glasgow. I decided to talk briefly about my own app development in my research, why it involves quickly building apps, and how I tend to do that.
I first gave the premise of my work: To understand an app (or the ideas manifested in the app), it needs to be built, so that it can be studied in use. In my view, we can only know what an artefact is once it is in use. We cannot know what it is prior to that.
I then explained how I suggest people to do that. None of the points are anything new, but it is hopefully something that people will start doing once they hear it often enough so I figured it is worth talking about. Concisely I'm trying to convey that you should make decisions when they are easy to make and refrain from it when it is time consuming.
Thus the process is:
- Sketch a lot of ideas. Sketch on paper or in any other material that is easy to produce and easy to discard.
- Make a mockup using Sketch, Photoshop, or anything else that allow you to create what you want different screens of your app should look like. This is where decisions are made. From the sketches made previously, pick one, make it into images that will say exactly what the app will look like on screen. The purpose of this mockup is to describe what is to implemented in the next phase.
- Now you build. But make no decisions what so ever. Just transfer the decisions manifested in the mockups, down to the font sizes, margins, and colours. As soon as you start playing around with margins, font sizes, and colours, you start loosing a lot of time. The reason is because it is not as easy and efficient as it would have been if you would have done this already when creating the mockups, so you should not do it now! If it makes it easier, pretend that the mockups come from a paying customer who pays you to implement an app that looks exactly like he has decided and you have no room for creative suggestions.
In my experience, following this simple rule of making all decisions while creating the mockups, and making no decisions when implementing, makes implementing it a breeze. I think one of the reasons for this is because when you try to make decisions in the implementation phase you not only need to think about how you would like it to look, but you also need to think about how to make it so. Having the decision made means you only need to think about how to make it.
Valentine's IoT mirror
Posted on 2015-02-14
I have for the longest time wanted to get into electronics. While I have been tinkering with connecting lights and motors to batteries since a very low age, taken several electronics courses both in highschool and at university, I've never done anything practical. Recently however I started using my now-of-age reserves of money towards DIY-electronic stuff in order to try and finally do something. In the last couple of weeks I've learned how easy it really is once you actually have the components you need, and how the DIY culture, especially around Arduino, have made these things incredibly accessible. It's safe to say that we've come a long way since the days of holding a small toy lightbulb against a 4.5V battery (which I did as a kid).
Since when I get into something I tend to immerse myself quite deeply. Therefore, for this valentines day I quite readily jumped to the idea of building something with my newfound skills and toys. I therefore decided to connect a few LEDs in the shape of a heart that could flash in interesting ways to give to my girlfriend. As you can see in the video, it eventually turned into a mirror with hidden heart-shaped LEDs that can be controlled through a web interface on the local network.
I had at this point built up a sensor network at home using nRF24L01+ for wireless communication (which is an incredibly cheap but easy to use RF-module), and both Arduino Pro Minis as well as ATtiny85s as brains. Therefore I already had one of the radio modules connected to an Arduino communicating serially with a small server in the house. All I had to do was to figure out how I could control and drive a bunch of LEDs (ended up using 14) from the Arduino, and then try and package it nicely to be a suitable gift.
The mirror is built using an Arduino Pro Mini 5V, a nRF24L01+, driven using a 12V power adapter. Pretty sure 12V is overkill, but it's what I had lying around. The nRF24L01+ must be run on 3.3V so it's also using a voltage regulator that I put on the control board for the LEDs. The LED control is two 547 transistors and the LEDs are current limited using 470ohm. I figured that I couldn't run the current for all 14 LEDs through one transistor (they would consume about 150mA, and I didn't have any other transistors lying around) and therefore split them over two. Also ended up connecting the base of the transistors to two different pins on the Arduino, and could theoretically control the upper and lower part of the heart individually. Just ended up not doing that.
The mirror is continuously listening to radio traffic. When a control message arrives, it changes the mode of the LEDs. The software on the mirror is therefore incredibly simple. The server however had to be slightly modified. To this point the server was only listening to sensor nodes, and not transmitting any information back. I therefore had to change both the Arduino program to listen to serial communication and forward the data to the radio, and the software running on the server. The current server software was in Python, but decided to change to NodeJS. Since I also wanted to be able to control from a web interface, I took the time to also build a simple rest-api for sending the command to the mirror using HTTP. Thus the server software now listens to the serial for sensor readings from my sensors in the house and stores that in a database, as well as receives HTTP requests for sending out data packets to listening nodes.
Finally I created a super simple web page with four buttons for selecting one of the four settings on the mirror: heart-beat, off, on, and smooth pulse.
It was a fun project, girlfriend was happy, and I can now move on to the next projects. The project gave me experience in designing and soldering a PCB (using vero board), cutting such board using a drill, how simple it can be to put things together in not too shabby ways.